Tree-representation of set families and applications to combinatorial decompositions

نویسندگان

  • Binh-Minh Bui-Xuan
  • Michel Habib
  • Michaël Rao
چکیده

The number of families over ground set V is 22 |V | and by this fact it is not possible to represent such a family using a number of bits polynomial in |V |. However, under some simple conditions, this becomes possible, like in the cases of a symmetric crossing family and a weakly partitive family, both representable using Θ(|V |) space. We give a general framework for representing any set family by a tree. It extends in a natural way the one used for symmetric crossing families in [Cunningham and Edmonds, Canadian Journal of Mathematics, 1980]. We show that it also captures the one used for weakly partitive families in [Chein, Habib, and Maurer, Discrete Mathematics, 1981]. We introduce two new classes of families: weakly partitive crossing families are those closed under the union, the intersection, and the difference of their crossing members, and union-difference families those closed under the union and the difference of their overlapping members. Each of the two cases encompasses symmetric crossing families and weakly partitive families. Applying our framework, we obtain a linear Θ(|V |) and a quadratic O(|V |2) space representation based on a tree for them. We introduce the notion of a sesquimodule – one module and half – in a digraph and in a generalization of digraphs called 2-structure. From our results on set families, we show for any digraph, resp. 2-structure, a unique decomposition tree using its sesquimodules. These decompositions generalize strictly the clan decomposition of a digraph and that of a 2-structure. We give polynomial time algorithms computing the decomposition tree for both cases of sesquimodular decomposition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Operations on PQ Trees and Modular Decomposition Trees

Partitive set families are families of sets that can be quite large, but have a compact, recursive representation in the form of a tree. This tree is a common generalization of PQ trees, the modular decomposition of graphs, certain decompositions of boolean functions, and decompositions that arise on a variety of other combinatorial structures. We describe natural operators on partitive set fam...

متن کامل

Asymptotic behaviour of associated primes of monomial ideals with combinatorial applications

Let  $R$ be a commutative Noetherian ring and $I$ be an ideal of $R$. We say that $I$ satisfies the persistence property if  $mathrm{Ass}_R(R/I^k)subseteq mathrm{Ass}_R(R/I^{k+1})$ for all positive integers $kgeq 1$, which $mathrm{Ass}_R(R/I)$ denotes the set of associated prime ideals of $I$. In this paper, we introduce a class of square-free monomial ideals in the polynomial ring  $R=K[x_1,ld...

متن کامل

representation theorems of $L-$subsets and $L-$families on complete residuated lattice

In this paper, our purpose is twofold. Firstly, the tensor andresiduum operations on $L-$nested systems are introduced under thecondition of complete residuated lattice. Then we show that$L-$nested systems form a complete residuated lattice, which isprecisely the classical isomorphic object of complete residuatedpower set lattice. Thus the new representation theorem of$L-$subsets on complete re...

متن کامل

Combinatorial Optimization on Graphs of Bounded Treewidth

There are many graph problems that can be solved in linear or polynomial time with a dynamic programming algorithm when the input graph has bounded treewidth. For combinatorial optimization problems, this is a useful approach for obtaining fixed-parameter tractable algorithms. Starting from trees and series-parallel graphs, we introduce the concepts of treewidth and tree decompositions, and ill...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2012